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ABSTRACT 

Presented herein is a newly developed quantitative approach for assessing potential ecological 
risk resulting from long-term degradation of deep-sea plastic-containing infrastructure. The 
risk characterisation involves four iterations of modelled ‘risk’ through forward or backward 
calculation of a deterministic hazard quotient, mathematically defined as the ratio of estimated 
exposure to a reference dose (or concentration) for a similar exposure period. The assess-
ment focuses on direct effects of microplastics exposure, wherein exposure concentrations 
are based on modelled estimates of microplastic mass formation resulting from structure 
deterioration over time. Predicted no effect concentrations (PNECs) protective of slightly-to- 
moderately disturbed ecosystems and ecosystems of high conservation value were determined 
based on a species sensitivity distribution (SSD), in accordance with the current Australian and 
New Zealand Guidelines for Fresh and Marine Water Quality. Each iteration of risk char-
acterisation is performed irrespective of burial, with varying exposure unit dimensions (i.e. 
geographically localised and broader regions of microplastic dispersal) and degrees of plastic 
degradation, designed to conservatively bound the risk characterisation. Additionally, two 
SSDs derived from different ecotoxicological data sets prioritising either particle shape or 
marine species are also provided for a sensitivity analysis of the PNEC. Thus, the bounding 
exercise encompasses all possible outcomes. The risk characterisation approach is reviewed 
for a case study of two larger plastic-containing flowline assets in an oil production field 
offshore of Australia. The outcome of the risk assessment is the same for all model iterations: 
degradation of the subsea plastic-containing flowlines does not pose a risk to the local marine 
community.  

Keywords: degradation, ecological risk, microplastics, NEBA, net environmental benefit anal-
ysis based comparative assessment, offshore decommissioning, plastics, risk assessment, toxicity. 

Introduction 

Australia has in the order of 5000 km of offshore export and inter-field pipelines, 
3200 km of infield flowlines and static umbilicals, 57 fixed facilities, and 11 floating 
facilities currently operating in Commonwealth waters (Advisian 2020). More than half 
of Australia’s offshore petroleum assets are older than 20 years, with some exceeding 
50 years and, consequently, are predicted to be approaching the end of the service 
lifetime (Melbourne-Thomas et al. 2021) and require decommissioning soon. The view 
of the National Offshore Petroleum Safety and Environmental Management Authority is 
that the designated decommissioning approach must provide equal or better environ-
mental outcomes than default full removal of the infrastructure (considered the ‘best 
case’ expectation under current legislation) and meet as low as reasonably practicable 
(ALARP) levels of risk. Several of the decommissioning options commonly considered 
in net environmental benefit assessment based comparative assessment (NEBA-CA) 
involve leaving subsea structure in situ (in part or in whole) (Schubel 2020), as the 
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structures are known to support diverse and thriving eco-
logical communities (Fowler and Booth 2012; Claisse et al. 
2014a, 2014b; Fowler et al. 2015; Todd et al. 2018;  
Schubel 2020). 

Recently, the ecological risks associated with long-term 
degradation of plastic-containing infrastructure in offshore 
oil/gas fields has garnered focus from regulators when 
evaluating decommissioning strategies for these develop-
ments. Microplastics (<5 mm) are expected to form over 
time as plastic components deteriorate through physical, 
chemical, and biological processes. The adverse effects 
commonly discerned when the impacts of microplastics 
on the marine environment are discussed include the fol-
lowing: (1) the physical and toxicological effects of micro-
plastic particle exposure, and (2) toxicological effects 
associated with leached plastic additives and monomers 
unreacted in the plastic material and hydrophobic organic 
chemicals (HOCs) from the surrounding environment 
sorbed to microplastic particles (GESAMP 2015; EPA 
2016). To date, risk assessments of microplastics have 
primarily examined ecological risk associated with expo-
sure to suspended (buoyant) microplastics based on mod-
elled estimates of global plastic input (e.g. Everaert et al. 
2018), ranges of exposure concentrations currently mea-
sured in the global aquatic environment (e.g. Burns and 
Boxall 2018; Besseling et al. 2019), or site-specific mea-
surements (e.g. Jung et al. 2021; Pan et al. 2021). To the 
best of the authors’ knowledge, an approach for quantita-
tive assessment of the potential ecological risks resulting 
from long-term degradation of subsea, plastic-containing 
structures does not exist. 

Presented herein is a procedure developed expressly for 
this purpose, employed at an oil production field offshore of 
Australia. The risk characterisation approach is reviewed for 
a 12-inch rigid flowline and piggybacking 2-inch coiled tub-
ing flowline in the field, which represent two of the develop-
ment’s greatest potential sources of microplastics. These 
structures are each 8+ km in length and situated at greater 
than 130 m at depth along the seabed. The 12-inch rigid 
flowline is insulated in four-layer polypropylene (PP), 
which includes successive layers of fusion-bonded epoxy 
(FBE) primer, copolymer adhesive, and foamed PP, encased 
in solid PP with a wall thickness of 3 mm. The 2-inch flowline 
is insulated in three-layer polyethylene, comprising succes-
sive layers of FBE primer and copolymer adhesive, encased in 
solid high-density polyethylene (HDPE) with a wall thickness 
of 1.65 mm. The assessment focuses on direct effects of 
microplastics exposure, wherein exposure concentrations 
are based on modelled estimates of microplastic mass forma-
tion resulting from structure deterioration over time. 
Ecological risks associated with exposure to leached additives 
and monomers and HOCs associated with microplastic 
particles are considered negligible based on a review of the 
peer-reviewed scientific literature (this topic is beyond the 
scope of this paper). 

Background 

Plastic degradation 

The mechanisms for plastic degradation can be classified as 
follows: (1) physical, referring to changes in the bulk struc-
ture; (2) chemical, referring to factors which result in 
changes at the molecular level (e.g. bond cleavage) that 
weaken and disintegrate the material; or (3) biological, 
referring to the mineralisation of the material and/or its 
degradation byproducts by biota (e.g. microbes) in the 
environment (Chamas et al. 2020). The abiotic and biotic 
processes act in tandem (potentially at vastly different 
rates), with abiotic degradation leading to more labile 
products that promote biological degradation (Albertsson 
and Karlsson 1990; Lee et al. 1991; Gautam et al. 2007;  
Wayman and Niemann 2021). Typically, chemical degra-
dation in the natural environment involves either hydroly-
sis or oxidation, both of which are accelerated by 
ultraviolet (UV) radiation and heat. Ultimately these pro-
cesses result in chain scission and depolymerisation, weak-
ening the material and making it susceptible to fracture and 
deterioration. 

The mechanisms responsible for the breakdown of plastics 
and associated reaction kinetics vary based on the chemical 
structure of the polymer, though plastic degradation generally 
proceeds very slowly under natural environmental conditions 
(Chamas et al. 2020). For polyolefins (e.g. PP and HDPE), 
degradation often is initiated by photooxidation where UV 
radiation provides the activation energy required to initiate 
the incorporation of oxygen atoms into the polymer (Ranby 
and Rabek 1975; Guillet 1980). Specifically, UV radiation 
electronically excites (and thus makes reactive) certain groups 
in the polymer (e.g. carbonyl groups; often impurities intro-
duced during the manufacturing process), or dissociate poly-
mer bonds to radicals (photolysis). These photolytic species 
participate in chain propagation reactions in the presence of 
oxygen that result in bond cleavage (referred to as chain 
scission when in the polymer backbone) and depolymerisa-
tion, or cross-link through radical recombination when oxy-
gen availability is limited. Photooxidation is restricted to the 
surface layers of the polymer where the material interacts 
with light. 

In the absence of UV radiation, most plastic polymers are 
stable for very long periods of time (Grassie and Scott 1988) 
at ambient temperatures; high temperatures (>350°C) are 
typically required for thermally-induced oxidation (Ahmad 
et al. 2014). For example, oxidation of PE does not occur at 
appreciable rates when exposed to temperatures below 
100°C without UV radiation (Gardette et al. 2013). For 
this reason, plastic degradation is expected to be considera-
bly slow at depth in the marine environment. 

Plastic degradation rate in the marine environment is 
expected to decrease with depth due to declining dissolved 
oxygen availability in the water column. Dissolved oxygen 
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content typically follows a monotonically decreasing profile 
along water depth as a consequence of microbial decompo-
sition, lack of atmospheric contact for diffusion, and absence 
of photosynthesis. Additionally, sediment burial of plastic 
limits infrastructure interaction with oxygen and is expected 
to further limit the oxidation of plastics. Oxygen flux across 
the sediment–water interface and downward transport of 
oxygen though the sediment column is generally restricted 
to the top several centimetres (Jørgensen and Revsbech 
1985; Glud et al. 1994), as oxygen is depleted for 
microbially-mediated mineralisation of organic matter and 
re-oxidation of reduced inorganic metabolites. 

The rate of polymer degradation is also expected to vary 
over time with chemical and morphological changes. In 
crystalline regions where interstitial space is limited, the 
chain scissions occurring as a result of photooxidation are 
generally followed by an immediate recombination (cross- 
linking) caused by the inability of the polymer chains to 
move and attain different physical conformations and due to 
slower diffusion of oxygen (Liu et al. 2019; Grause et al. 
2020). Thus, crystalline regions degrade more slowly than 
amorphous regions and degradation rates are expected to 
taper as the amorphous regions are eliminated. 
Additionally, partial polymer degradation can lead to sec-
ondary cross-linking and/or crystallisation in amorphous 
regions adjacent to crystallites, further slowing degradation 
(Restrepo-Flórez et al. 2014). In contrast, morphological 
changes over time resulting from mechanical degradation 
produce changes in surface roughness and additional surface 
area available for oxidation, increasing the degradation rate. 
Mechanical degradation may be enhanced by vortex- 
induced vibrations for free spanning flowlines and stresses 
during deployment of the flowlines. The relatively constant 
cool temperatures at depth in the sea are expected to reduce 
thermal movements (i.e. expansions and contractions) of the 
flowlines and induced stresses that may contribute to 
mechanical degradation of the plastic. 

Microplastic ingestion 

Numerous field studies are available demonstrating micro-
plastic particle ingestion in aquatic biota (Van 
Cauwenberghe and Janssen 2014; Bellas et al. 2016;  
Alomar and Deudero 2017; Courtene-Jones et al. 2017;  
Güven et al. 2017; Jabeen et al. 2017; Leslie et al. 2017;  
Ory et al. 2017; Pazos et al. 2017; Silva-Cavalcanti et al. 
2017). Effect studies with microplastics have explored a 
range of toxicological endpoints including survival, growth, 
reproduction, and behavioural and biochemical endpoints. 
Toxicological response to microplastic exposure varies 
across test species and is suspected to be affected by particle 
size and morphology (Gray and Weinstein 2017; Hodson 
et al. 2017; Ziajahromi et al. 2017). 

The trophic transfer of microplastics and subsequent 
gradual enrichment (biomagnification) through the food 

web has been hypothesised, but not demonstrated under 
environmentally realistic conditions (Burns and Boxall 
2018). In fact, several studies propose that microplastic 
presence in fish and invertebrates is ephemeral and micro-
plastics are readily eliminated from the body (Ugolini et al. 
2013; Hämer et al. 2014; Mazurais et al. 2015; Blarer and 
Burkhardt-Holm 2016; Grigorakis et al. 2017; Güven et al. 
2017). Thus, the available evidence suggests that microplas-
tics do not appreciably accumulate within marine biota, nor 
biomagnify through the food web. 

Methods 

Overview 

This portion of the paper describes the methodology used to 
evaluate the potential for adverse ecological effects resulting 
from plastic degradation and subsequent microplastic for-
mation along the flowlines. The ecological risk characterisa-
tion combines the exposure profile with a reference 
concentration protective of the marine community for a 
similar exposure period, to produce numerical indices of 
potential health effect. The risk characterisation is per-
formed in four iterations with varying exposure unit dimen-
sions (i.e. geographically localised and broader regions of 
microplastic dispersal) and degrees of plastic degradation, 
designed to provide an examination of model sensitivity to 
the various inputs and conservatively bound the risk 
characterisation. 

Exposure medium 

The PP and HDPE comprising the exposed solid layer of the 
12-inch rigid flowline and 2-inch coiled tubing flowline, 
respectively, are less dense than sea water. For the purposes 
of the risk characterisation, microplastics forming along the 
flowlines are assumed either neutrally or positively buoyant 
and remain in the water column where they may interact 
with the local ecological community. 

Buoyant plastics may develop biofouling and become 
deposited in sediments. Evaluation of sediments under the 
Australian and New Zealand Guidelines for Fresh and 
Marine Water Quality (ANZG 2018) involves a tiered 
approach (Simpson et al. 2013). For contaminants without 
a sediment quality guideline value (as is the case for micro-
plastics), the evaluation involves comparison of site concen-
trations with background concentrations in reference 
sediments of comparable grain size from appropriate sites. 
The information for a proper background assessment of 
microplastics is scarce and an area for further research. 
However, microplastics are ubiquitous in the marine envir-
onment (Thompson et al. 2009) in part due to relatively 
large land-based inputs and, thus, concentrations of micro-
plastics in oil/gas field sediments are expected to be 
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predominantly the result of contributions from sources other 
than plastic structures in the field. For perspective, the 
volume of plastics entering the oceans per year from land- 
based sources is estimated between 4.8 and 12.7 Mt 
(Jambeck et al. 2015), an amount that is anticipated to 
grow with escalating plastics production worldwide. For 
these reasons, microplastics in sediment have not been fur-
ther considered in the risk assessment. 

Hazard quotient (HQ) calculation 

Each iteration of ‘risk’ characterisation involves forward 
calculation (Iteration #2–#4) or back-calculation 
(Iteration #1) of a deterministic hazard quotient (HQ). 
The HQ metric provides a screening-level evaluation of the 
potential (not probability) for adverse ecological effects by 
comparing a modelled exposure level over a specified time 
period to a no-effect level for a similar exposure period: 

HQ= PEC
PNEC

;

where PEC is the predicted environmental concentration and 
PNEC is the predicted no-effect concentration. HQ outcomes 
are typically reported to one significant figure (EPA 2004). 

The HQ assumes that there is a level of exposure below 
which it is unlikely for even sensitive populations to experi-
ence adverse health effects. Thus, the exposure level is not 
considered to pose a risk to animal populations when less 
than or equal to the PNEC (HQ ≤ 1). Conversely, if the 
exposure level exceeds the threshold (HQ > 1), there may 
be concern for potential adverse effects, suggesting that fur-
ther consideration of the potential for effect is warranted. A 
HQ > 1 does not guarantee that there are ecological recep-
tors bearing a toxicological effect of concern (Tannenbaum 
2003) and, furthermore, does not indicate adverse impacts to 
populations or communities of organisms (Barnthouse 2008). 
Numerous authors have noted that the results of determinis-
tic models often do not comport with visible evidence of 
population-level effects at terrestrial sites where these tools 
have indicated potential for ecological risk (Linzey and Grant 
1994; Henning et al. 1997, 2003; Boonstra and Bowman 
2003; Tannenbaum 2003, 2005; Barnthouse 2008). Thus, 
the HQ methodology can result in amplified predictions of 
potential harm to ecological receptors, and provides a very 
conservative approach to ecological risk characterisation. 

The HQ model has been applied in several peer-reviewed 
ecological risk assessments of microplastics (Burns and 
Boxall 2018; Everaert et al. 2018; Besseling et al. 2019;  
Jung et al. 2021). 

Rate of plastic degradation 

In the present study, degradation and deterioration are used 
synonymously, to refer to overall mass loss from the initial 

polymer piece. Loss of microplastics fragments reduces the 
initial mass, without changing the total amount of plastic 
present. Thus, the rate of polymer degradation is assumed 
equal to the rate of microplastic formation. 

The polymer degradation rate (rd) is defined as the dif-
ferential mass loss per unit time. As previously noted, the 
mechanisms and kinetics of degradation are contingent 
upon the intrinsic properties of the plastic and the ambient 
environmental conditions. Since degradation occurs princi-
pally at exposed surfaces, the rate of degradation also varies 
based on extrinsic properties such as the size and shape of 
the material, and extent of sediment burial. Thus, the deg-
radation reaction is assumed proportional to the area of the 
exposed surface, which is expected to decrease as the flow-
line wall erodes. For annular cylindrical shapes such as the 
solid plastic casing insulating the flowlines, the following 
rate law is obtained (adapted from Chamas et al., 2020): 
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where: 

• kd is the linear rate (m/year) representing the perpendic-
ular depth of plastic degraded per unit time (referred to as 
the ‘specific surface degradation rate’ [SSDR]), a variable 
that is contingent on the intrinsic properties of the plastic 
and varies based on environmental conditions;  

• ρ is the density of the plastic (g/m3);  
• SA and r2 are the surface area (m2) and corresponding 

radius (m), respectively, of the outer wall of the solid 
plastic casing exposed to environmental factors that pre-
cipitate degradation;  

• r1 is the inner radius of the outer plastic casing (m); and  
• m is the mass of the plastic casing thickness (g). 

Assuming the density of the plastic and the length of the 
structure remain constant, integration and algebraic 
rearrangement yield solutions for the undegraded plastic 
mass as a function of time and time for complete degrada-
tion (derivation is included as supplementary information): 
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where:  

• mi and mt are the initial mass of plastic material and mass 
at time t, respectively (g);  

• l is the length of the cylindrical structure (m); and  
• td is the time for complete degradation (year). 
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Chamas et al. (2020) derived SSDRs for several commonly 
studied plastics under various environmental conditions 
based on a detailed review of experimental studies of plastic 
degradation available in the peer-reviewed scientific litera-
ture, including PP and PE when immersed in shallow water 
and exposed to sunlight, and with/without rapidly degrad-
ing fillers and/or laboratory-based pre-treatments that 
accelerate degradation. Several of the water-based studies 
reviewed by Chamas et al. (2020) were performed in the 
field and, thus, SSDRs derived from these studies inherently 
reflect the effects of naturally occurring mechanisms that 
sustain or accelerate plastic degradation in shallow water 
environments (e.g. UV radiation, mechanical degradation by 
currents, and microbial action). In the present study, struc-
ture deterioration and sequential microplastic formation is 
calculated twice for each model iteration: once based on an 
SSDR reported by Chamas et al. (2020) for a shallow water 
environment with exposure to sunlight, and a second time 
incorporating degradation accelerants. Both calculations 
can be expected to overestimate degradation and provide 
a conservative range of lifetime estimates for the solid plas-
tic layer insulating each flowline, as the deep marine setting 
lacks the necessary UV radiation and/or thermal energy to 
provide the activation energy required to initiate and/or 
sustain oxidative degradation. Furthermore, laboratory 
pre-treatments that accelerate degradation are not available 
in the natural environment. 

Plastics are expected to undergo chemical and morpho-
logical changes as degradation proceeds and, thus, the SSDR 
is expected to vary with time. However, degradation is an 
irregular and inconsistent process, and this effect cannot be 
quantified or modelled at this time. Accordingly, plastic 
degradation is conservatively estimated using the high-end 
range SSDR reported by Chamas et al. (2020) for each 
plastic type and degradation condition (Table 1). 

The lifetime of the 3 mm solid PP insulation encasing the 
12-inch rigid flowline is estimated between 200 and 
400 years, while the lifetime of the 1.65 mm solid HDPE 
layer encasing the smaller 2-inch flowline is estimated 

between 75 and 150 years. The rate of mass loss resulting 
from microplastic formation over the lifetime of the struc-
ture is depicted in Fig. 1. The cumulative theoretical annual 
contribution of plastic mass from the solid casings of both 
flowlines is <15 g/m (<100 kg across their full length), 
assuming each flowline is fully exposed and degradation 
accelerants (e.g. laboratory pre-treatments) are not present. 

Effects assessment 

Species sensitivity distribution (SSD) 
The present risk characterisation approach examines the 

consequences of microplastic exposure to the local ecology 
at the community level based on SSD of chronic toxicity 
data, in accordance with the current Australian and New 
Zealand Guidelines for Fresh and Marine Water Quality 
(ANZG 2018) (‘the Guidelines’). A SSD is a model of the 
variation in sensitivity of species to a particular stressor 
(Posthuma et al. 2002). SSDs are derived by fitting a 
selected statistical distribution to toxicological endpoint 
data obtained from single-substance bioassays representing 
a range of taxa. Toxicological endpoints of concern are those 
that drive population persistence, growth, or decline, 
including growth suppression, decline in reproductive func-
tion, and/or mortality (Connors et al. 2017). The fitted 
distribution is used to infer a concentration that will be 
protective of a desired proportion of species in a hypotheti-
cal aquatic community. For non-bioaccumulative contami-
nants, the Guidelines recommend use of the 5% hazard 
concentration (HC5; protective of 95% of species in an 
ecosystem) for protection of slightly-to-moderately dis-
turbed ecosystems and the 1% hazard concentration (HC1; 
99% protection) for protection of ecosystems with high 
conservation value (Warne et al. 2018). The risk assessment 
utilises both the HC5 and more conservative HC1 to examine 
model outcomes for different categories of ecosystem 
condition. 

Ecotoxicological data pertaining to microplastics 
A total of 51 freshwater and marine animal ecotoxicity 

studies examining the toxicity (i.e. suppressed growth, 
decreased reproductive performance, and/or mortality) of 
microplastic exposure (e.g. ingestion) in the water column 
were identified through a detailed search of the peer- 
reviewed scientific literature. A variety of experimental 
designs have been used to evaluate the impacts of microplas-
tics on freshwater and marine organisms. The most common 
test material is polystyrene, followed by PP. Studies fre-
quently focus on single-size, spherical particles, with mixtures 
of irregular shapes (e.g. fibres and weathered fragments) of 
various sizes tested less frequently despite their prevalence in 
environmental samples (Phuong et al. 2016). 

The ecotoxicity studies were screened for use in the SSD 
following procedures set forth in the Guidelines and based 
on environmental relevance. Accordingly, two SSDs were 

Table 1. High-end specific surface degradation rates (kd) reported 
by  Chamas et al. (2020) for polypropylene and high-density 
polyethylene, employed in the degradation rate model.     

Plastic Shallow 
marine kd 

(µm/year) 

Shallow marine kd 

with degradation 
accelerant (µm/year)   

Polypropylene 7.5 15A 

High-density polyethylene 11 22 

Akd reported by  Chamas et al. (2020) for accelerated degradation of PP 
(4.6 µm/year) is lower than its non-accelerated counterpart, which is not 
expected. Accordingly, the kd was conservatively assumed to be 15 µm/year 
based on the 2:1 ratio reported for HDPE degradation with/without labora-
tory pre-treatments.  

www.publish.csiro.au/aj                                                                                                                            The APPEA Journal 

145 

https://www.publish.csiro.au/aj


generated based on different data sets prioritising either 
particle shape or marine species, to examine the sensitivity 
of the PNEC (HC5 and HC1) outcome.  

1. SSD #1 reflects the variation in species sensitivity to 
microplastic mixtures containing irregular shapes of vari-
ous sizes. The SSD includes chronic EC10 (i.e. effect con-
centration at which 10% effect is observed) and no 
observed effect concentration (NOEC) data for 10 marine 
and freshwater species of various life stages (e.g. adult, 
juvenile, and larval) representing six taxonomic groups 
(Table 2). Combining marine and freshwater data was 
necessary to achieve the minimal data requirements and 
statistical power under the Guidelines; this is a common 
practice in risk assessment of microplastics (Burns and 
Boxall 2018; Besseling et al. 2019; Jung et al. 2021).  

2. SSD #2 reflects the variation in marine species sensitivity 
to microplastics. The SSD includes chronic NOEC data for 
15 marine species of various life stages representing eight 
taxonomic groups, based on studies employing either 
mixtures of irregular shapes of various sizes or single- 
size spherules (Table 3). 

The data used in the SSDs are almost exclusively 
unbounded NOEC, meaning that a statistically significant 
difference between the test group exposed to the highest 
concentration of microplastics and the control group was 
not detected. Thus, true NOECs may be higher than the 
reported values and the HC5/HC1 values employed in the 
risk assessment may be lower than the true HC5/HC1. 

Predicted no effect concentration (PNEC) for 
microplastics 

The data in Table 2 and Table 3 were separately entered 
into Burrlioz 2.0 software (Barry and Henderson 2014), in 
accordance with the Guidelines. The Burrlioz software auto-
matically selects the type of distribution that is fitted to the 
toxicity data based on data count. Toxicants that have tox-
icity data for ≥8 species that belong to at least four taxo-
nomic groups are fitted to a three-parameter Burr Type-III 
distribution, for reasons described by Batley et al. (2018). 
The SSD outputs are shown in Fig. 2a, b (SSD #1) and  
Fig. 3a, b (SSD #2). The Burrlioz software computes a HC5 
of 0.066 mg/L and HC1 of 0.032 mg/L for SSD #1, and a HC5 
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Table 2. Ecotoxicological data inputs to SSD#1. Studies examine effects of exposure to irregularly-shaped microplastics of various sizes in marine or freshwater species.           

Source Test subject: Species, 
Phylum, Biome 

Life stage Polymer type Particle shape/size Concentrations 
tested 

Exposure 
duration 

Effect 
endpoint 

NOEC or effect- 
level    

Green (2016) Ostrea edulis (Mollusca) Adults PE Irregular/0.48–316 µm 0.8, 80 µg/L 60 days Growth NOEC: 80 µg/L 
(0.08 mg/L) 

Marine macroinvertebrate Chronic  

Imhof 
et al. (2017) 

Daphnia magna (Arthropoda) Adult Two mixtures, 
assorted, 
acrylic 

Irregular/<100, 
29.5 µm central 

tendency 

580 part./mL 21 days Growth NOEC: 8.41 mg/L A 

Freshwater macroinvertebrate Chronic  

Jung 
et al. (2021) 

Cyprindon variegatus (Chordata) Adult Mixed Mixed/12–704 μm 5 mg/L 28 days Mortality NOEC: 5 mg/L 

Marine fish Chronic  

Karami 
et al. (2017) 

Danio rerio (Chordata) Larvae PE Irregular/<17.6 µm 5, 50, 500 µg/L 20 days Growth NOEC: 500 µg/L 
(0.5 mg/L) 

Freshwater fish Chronic  

Qiao 
et al. (2019) 

Danio rerio (Chordata) Adult PS Irregular/<250 µm 200 μg/L 21 days Growth NOEC: 200 μg/L 
(0.2 mg/L) 

Freshwater fish Chronic  

Reichert 
et al. (2019) 

Acropora muricata (Cnidaria) Adult PE Irregular/65–410 µm 0.25 mg/ 
L = 203 part./L 

168 days Growth NOEC: 0.25 mg/L 

Marine macroinvertebrate Chronic  

Reichert 
et al. (2019) 

Pocillopora verrucosa (Cnidaria) Adult PE Irregular/65–410 µm 0.25 mg/ 
L = 203 part./L 

168 days Growth NOEC: 0.25 mg/L 

Marine macroinvertebrate Chronic  

Reichert 
et al. (2019) 

Porites lutea (Cnidaria) Adult PE Irregular/65–410 µm 0.25 mg/ 
L = 203 part./L 

168 days Growth NOEC: 0.25 mg/L 

Marine macroinvertebrate Chronic  

Yokota 
et al. (2017) 

Microcystis aeruginosa 
(Cyanobacteria) 

– Assorted Irregular/<200 µm 66.7 mg/L 21 days Growth NOEC: 66.7 mg/L 

Freshwater microorganism Chronic  

Yokota 
(2017) 

Dolichospermum flosaquae 
(Cyanobacteria) 

– Assorted Irregular/<200 µm 66.7 mg/L 21 days Growth NOEC: 66.7 mg/L 

Freshwater microorganism Chronic  

Ziajahromi 
et al. (2017) 

Ceriodaphnia dubia 
(Arthropoda) 

Juvenile Polyester Fibres/100–400 µm 31.25–1000 µg/L 9 days Reproductive 
performance 

EC10 = 208 µg/L 
(0.208 mg/L) 

Freshwater macroinvertebrate Chronic 

ABased on spherical shape and central tendency diameter.  
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Table 3. Ecotoxicological data inputs to SSD#2. Studies examine effects of exposure to irregularly-shaped and spherical microplastics of various sizes in marine species.           

Source Test subject: Species, 
Phylum, Biome 

Life 
stage 

Polymer 
type 

Particle shape/ 
size tested 

Concentrations tested Exposure 
duration 

Effect 
endpoint 

NOEC    

Beiras et al. (2018) Oryzias melastigma (Rotifera) Adult PE Sphere/4–6 µm 0, 1, 10 mg/L 12 days Mortality 10 mg/L 

Marine microinvertebrate Chronic  

Beiras et al. (2018) Acartia clausi (Arthropoda) Larvae PE Sphere/4–6 µm 0, 1, 3, 10, 30 mg/L 2 days Mortality 30 mg/L 

Marine macroinvertebrate Chronic  

Cole and 
Galloway (2015) 

Crassostrea gigas (Mollusca) Larvae PS Sphere/1 µm 1000 part./ 
mL = 1.25 × 10−3 mg/L 

8 days Growth 1.25 × 10−3 mg/L 

Marine macroinvertebrate Chronic  

Cole and 
Galloway (2015) 

Crassostrea gigas (Mollusca) Larvae PS Sphere/10 µm 1000 part./mL = 1.95 mg/L 8 days Growth 1.95 mg/L 

Marine macroinvertebrate Chronic  

Davarpanah and 
Guilhermino (2015) 

Tetraselmis chuii (Chlorophyta) – PE Sphere/1–5 µm 0.046–1.472 mg/L 4 days Growth 1.472 mg/L 

Marine microalgae Chronic  

Gambardella 
et al. (2017) 

Artemia franciscana 
(Arthropoda) 

Larvae PS Sphere/0.1 µm 0, 0.001, 0.01, 0.1, 1, 
10 mg/L 

2 days Mortality 10 mg/L 

Marine macroinvertebrate Chronic  

Green (2016) Ostrea edulis (Mollusca) Adults PE Irregular/ 
0.48–316 µm 

0.8, 80 µg/L 60 days Growth 80 µg/L (0.08 mg/L) 

Marine macroinvertebrate Chronic  

Jung et al. (2021) Cyprindon variegatus (Chordata) Adult Mixed Mixed/ 
12–704 μm 

5 mg/L 28 days Mortality 5 mg/L 

Adult fish Chronic  

Lo and Chan (2018) Crepidula onyx (Mollusca) Larvae PP Sphere/2–2.4 µm 6 × 104, 1.4 × 105 part./mL 95 days Growth, 
mortality 

0.7 mg/L A 

Marine macroinvertebrate Chronic  

Reichert et al. (2019) Acropora muricata (Cnidaria) Adult PE Irregular/ 
65–410 µm 

0.25 mg/L = 203 part./L 168 days Growth 0.25 mg/L 

Marine macroinvertebrate Chronic  

Reichert et al. (2019) Pocillopora verrucosa (Cnidaria) Adult PE Irregular/ 
65–410 µm 

0.25 mg/L = 203 part./L 168 days Growth 0.25 mg/L 

Marine macroinvertebrate Chronic  

Reichert et al. (2019) Porites lutea (Cnidaria) Adult PE Irregular/ 
65–410 µm 

0.25 mg/L = 203 part./L 168 days Growth 0.25 mg/L 

Marine macroinvertebrate Chronic  

Ribeiro et al. (2017) Scrobicularia plana (Mollusca) Adult PS Sphere/18.4 µm 1 mg/L 14 days Growth 1 mg/L 

Marine macroinvertebrate Chronic 

(Continued on next page) 
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Table 3. (Continued)          

Source Test subject: Species, 
Phylum, Biome 

Life 
stage 

Polymer 
type 

Particle shape/ 
size tested 

Concentrations tested Exposure 
duration 

Effect 
endpoint 

NOEC    

Seoane et al. (2019) Chaetoceros neogracile 
(Ochrophyta) 

– PS Sphere/0.5 µm 2.5 mg/L 3 days Growth 2.5 mg/L 

Marine microalgae Chronic  

Sjollema et al. (2016) Dunaliella tertiolecta 
(Chlorophyta) 

– PS Sphere/0.5 µm 25, 250 mg/L 3 days Growth 250 mg/L 

Marine macroalgae Chronic  

Sjollema et al. (2016) Dunaliella tertiolecta 
(Chlorophyta) 

– PS Sphere/6 µm 25, 250 mg/L 3 days Growth 250 mg/L 

Marine macroalgae Chronic  

Sjollema et al. (2016) Dunaliella tertiolecta 
(Chlorophyta) 

– PS Sphere/0.05 µm 25, 250 mg/L 3 days Growth 25 mg/L 

Marine macroalgae Chronic  

Wang et al. (2019) Artemia parthenogenetica 
(Arthropoda) 

Juvenile PS Sphere/10 µm 0.55–550 µg/L 14 days Mortality 550 µg/L 
(0.550 mg/L) 

Marine macroinvertebrate Chronic 

ABased on spherical shape and central tendency diameter.  
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of 0.016 mg/L and HC1 of 0.00093 mg/L for SSD #2. The 
HC5 of 0.016 mg/L and HC1 of 0.00093 mg/L were conserv-
atively selected as the PNEC for protection of slightly-to- 
moderately disturbed systems and systems of high conser-
vation value, respectively. 

Risk model iterations 

The four iterations of risk characterisation are described herein. 
In Iterations #1–#3, microplastic mass formation is modelled 

over a 21-day period characteristic of a chronic exposure sce-
nario for adult fish (Warne et al. 2018). Shorter durations are 
considered chronic exposure for other organisms and life 
stages; however, the longer chronic exposure period was 
selected as a conservative measure to allow for more plastic 
degradation, maximising theoretical exposure in the risk char-
acterisation. The rate of plastic mass loss resulting from micro-
plastic formation is assumed constant over the lifetime of the 
structure at the median degradation rate, mathematically 
derived as the quotient of the total plastic mass in the outer 
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casing and the time of complete degradation. Each successive 
iteration is representative of a more realistic exposure profile 
under ambient conditions and, collectively, provide an exam-
ination of model sensitivity to the exposure unit dimensions. In 
Iteration #4, complete degradation of the flowlines and micro-
plastic exposure are assumed to occur over a very brief time 
frame, bounding modelled estimates of plastic degradation. 
Iterations #1–#4 are simulated several times commingling 
different estimations of microplastic contribution from the 
flowlines (based on different SSDRs representing shallow 
marine degradation conditions and also incorporating degra-
dation accelerants) and PNECs (HC5 and HC1), as appropriate. 

Each iteration of risk characterisation is performed for a 
1 m segment of the flowlines irrespective of burial (l = 1). 
Since the extent of microplastic formation and the dimen-
sions of the exposure unit are equally proportional to the 
length of the flowline, the PEC is considered constant along 
each 1 m length of flowline. Thus, the results of the risk 
characterisation are applicable along the full length of the 
flowlines. As such, the analysis is conservative should sec-
tions of the flowline be buried, which would further reduce 
degradation times and exposures. 

Iteration #1 
Iteration #1 provides an estimate of the dimensions of the 

exposure unit where microplastics must concentrate and 
remain for 21 days to result in concentration greater than 
the PNEC (HQ > 1) that may represent a potential hazard to 
marine organisms. A conceptual illustration is shown in Fig. 4. 

This iteration conservatively assumes microplastic 
dispersion (e.g. advection by currents) is negligible and 
that marine organisms wholly reside in the space of the 

microplastic mass cluster during the time frame evaluated. 
Thus, the purpose of the first iteration is to determine if 
unrealistic hydrologic conditions and ecological behaviour 
(i.e. fauna home range and movement) would be necessary 
to pose a potential risk to the marine community. 

Iteration #1 involves back-calculation of the HQ based 
on a PEC that is 1.5 times the PNEC (HQ = 2, accounting for 
significant figures), with the final step of the derivation 
process as follows: 

d m
l

r= 2
× 1.5×PNEC

+ ;21
2
2

1
2

where:  

• d is the distance from the outer wall of the flowline (in m) 
(in the case of piggy-backing flowlines, the calculation is 
performed with respect to the larger flowline);  

• r2 is the radius (in m) of the outer wall of the flowline;  
• m21 is the cumulative microplastic mass contribution 

across l m length of both flowlines over 21-day period of 
degradation (in µg); and  

• PNEC is the predicted no-effect concentration (i.e. HC5 or 
HC1) (in µg/m3). 

Iteration #2 
Iteration #2 provides an evaluation of the potential for 

ecological impairment for a localised exposure scenario 
where newly formed microplastics are assumed to concen-
trate and remain within an arbitrary distance of 100 ft 
(30.5 m) of the flowlines. This second iteration is considered 
to be more realistic than the first iteration as it provides more 
realistic representation of microplastic dispersion, although it 
can be expected to be conservative in that it is highly likely 
that microplastic material that separates from the surface of 
the flowlines would be dispersed more widely. 

Iteration #2 involves forward calculation of the HQ as 
follows: 

m
l r

HQ = PEC
PNEC

= 2
(30.5 )

1
PNEC

21
2

2
2

Iteration #3 
Iteration #3 provides an evaluation of the potential for 

adverse ecological effects where the dimensions of the expo-
sure unit are estimated via a three-dimensional ‘box model’ 
of microplastic fate and transport (conceptually illustrated in  
Fig. 5). The box model defines the spatial extent of newly 
formed microplastic mass based on advective flux due to 
transfer by water current velocity (X, Y) and density-driven 
rise velocity (Z). The box model assumes that (1) the vector 
of ocean current velocity and orientation of plastic structures 
are coplanar on the XY plane, thus the current does not 
contribute to the vertical migration of the microplastics and 

2-inch
flowline

12-inch flowline

Seabed

Fig. 4. Conceptual illustration of the exposure profile in Iteration 
#1 and Iteration #2, where the red bracket indicates the distance of 
microplastic dispersion from the plastic casing insulating the flowlines. 
In Iteration #1, this distance is calculated through back-calculation of 
the HQ. Iteration #2 assumes this distance is 30.5 m.  
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(2) the vector of ocean current velocity and course of the 
flowlines are oriented at a 45° angle. This is considered to be 
the most realistic scenario for organisms that may be exposed 
to microplastics that migrate from the plastic infrastructure. 

In Iteration #3, microplastic mass formation over a 21-day 
period is condensed into a 1-h window during which the 
microplastics are carried away from the flowlines and inter-
act with the local ecology (i.e. the box model is based on 1 h 
of dispersion). The 1-h exposure period represents chronic 
exposure for microinvertebrate gametes and macroalgae dur-
ing early life stages and is the shortest time period represent-
ative of chronic exposure among aquatic ecological 
assessment endpoints (Warne et al. 2018). 

Iteration #3 is expected to overestimate microplastic 
mass formation during the 1-h exposure period and assumes 
this extent of exposure is sufficient to cause adverse effects 
at the community level. Thus, this iteration results in ampli-
fied estimates of risk. 

The calculation for Iteration #3 is as follows: 

m
d d d

HQ = PEC
PNEC

=
× ×

1
PNEC

;
x y z

21

d v t d v t d r t= cos 45° , = sin 45° , and = ;x y z v

where:  

• dx, dy, and dz are the distance of microplastic dispersion in 
the X, Y, and Z directions (m);  

• v is the velocity of the ocean current (m/h);  
• rv is the density-driven rise velocity of the microplastics 

(m/h); and  
• t is the duration of microplastic dispersion (1 h). 

Iteration #4 
Iteration #4 provides an overly conservative evaluation 

of the potential for adverse ecological effects under a worst- 
case exposure scenario, in which the full mass of plastic in 
the outer layer of the flowlines is assumed to concentrate, 
immediately, as microplastics in the exposure unit defined 
by the box model in Iteration #3. The calculation for 
Iteration #4 is the same as for Iteration #3, except m21 is 
replaced by the totality of the plastic mass in the solid layer 
insulating the flowlines. 

Results 

Overview 

A summary of the degradation modelling and risk assess-
ment results are provided in Table 4 and Table 5, respec-
tively. The risk assessment results are reviewed herein. 

Iteration #1 

The computation predictably produced arbitrarily small mea-
surements of distance from the flowline wall (from 4 to 24 m), 
meaning the cumulative mass of microplastics displaced from 
the flowlines are limited to an extremely small region of the 
overall field, and area use by marine fauna is restricted to the 
same region. The implication that microplastic distribution is 
restricted in this locality and thus may present a risk to the 
marine community is unrealistic based on natural ambient 
conditions and behaviour of marine fauna.  

1. Plastic degradation is extremely slow under deep marine 
conditions (and likely to be significantly less than mod-
elled), and microplastics are far more likely to be advected 

z

vz

vx
vy

v

x

y

Fig. 5. Conceptual illustration of the ‘box model’ used to define the 
region of microplastic dispersion and exposure unit in Iteration #3 
and Iteration #4. Vx, Vy, and Vz are the velocity vectors for micro-
plastics separated from the flowlines in the X, Y, and Z plane, 
respectively, defined by the advective flux driven by ocean current 
and density-driven rise.  

Table 4. Degradation modelling.        

Component Plastic Shallow marine environment Shallow marine environment with 
degradation accelerant 

td m21 td m21 

(years) (µg) (years) (µg)   

12 inch rigid flowline PP 400 478 296 200 956 592 

2 inch coiled tubing HDPE 150 118 275 75 236 550 

Both flowlines – – 596 571 – 1 193 143 

td, time for complete degradation; m21, mass loss/21 days, no burial, l = 1 m.  
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Table 5. Risk assessment results.           

(a) Risk characterisation Iteration #1  

Shallow marine environment Shallow marine environment with degradation accelerant  

PNEC Volume around 1 m exposed section Distance from flowline PNEC Volume around 1 m exposed section Distance from flowline 

Component (µg/L) (L) (m3) (m) (µg/L) (L) (m3) (m)   

Both flowlines 16.0 24 857 24.9 4.0 16.0 49 714 49.7 5.6 

Both flowlines 0.93 427 650 427.6 16.5 0.93 855 299 855.3 23.3           

(b) Risk characterisation Iteration #2  

Volume around 1 m exposed 
section 

Shallow marine environment Shallow marine environment with degradation 
accelerant  

Concentrat-
ion 

HQ HQ Concentra-
tion 

HQ HQ 

Component (m3) (L) (µg/L) PNEC = 16  
µg/L 

PNEC =  
0.93 µg/L 

(µg/L) PNEC = 16  
µg/L 

PNEC =  
0.93 µg/L   

Both flowlines 1460.4 1 460 434 0.41 3 × 10−2 4 × 10−1 0.82 5 × 10−2 9 × 10−1           

(c) Risk characterisation Iteration #3  

Volume of dispersion from 
exposed 1 m section 

Shallow marine environment Shallow marine environment with degradation 
accelerant  

Concentrat-
ion 

HQ HQ Concentra-
tion 

HQ HQ 

Component (m3) (L) (µg/L) PNEC = 16  
µg/L 

PNEC =  
0.93 µg/L 

(µg/L) PNEC = 16  
µg/L 

PNEC =  
0.93 µg/L   

Both flowlines – 
‘Low Range’ rise 
velocity 

4.67 × 106 4.67 × 109 1.3 × 10−4 8 × 10−6 1 × 10−4 2.6 × 10−4 2 × 10−5 3 × 10−4 

Both flowlines – 
‘High Range’ rise 
velocity 

1.77 × 107 1.77 × 1010 3.4 × 10−5 2 × 10−6 4 × 10−5 6.7 × 10−5 4 × 10−6 7 × 10−5        

(d) Risk characterisation Iteration #4  

Volume of dispersion from exposed 1 m section All plastic mass in exposed 1 m section  

Concentration HQ HQ 

Component (m3) (L) (µg/L) PNEC = 16 µg/L PNEC = 0.93 µg/L   

Both flowlines – ‘Low Range’ rise 
velocity 

4.67 × 106 4.67 × 109 7.8 × 10−1 5 × 10−2 8 × 10−1 

Both flowlines – ‘High Range’ rise 
velocity 

1.77 × 107 1.77 × 1010 2.0 × 10−1 1 × 10−2 2 × 10−1   
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and diluted by the known water currents in the vicinity of 
the flowlines and density-driven rise through the water 
column. Thus, concentrations in the vicinity of the flow-
lines are expected to be lower than those that are associ-
ated with chronic (0.016 and 0.00093 mg/L) or acute 
(≫0.016 and ≫0.00093 mg/L) effects resulting from 
long-term and short-term exposure, respectively.  

2. Animals move about their home range in pursuit of 
resources, shelter, and reproduction, and experience 
exposure in various portions of their home range based 
on time spent and behaviour engaged in each area. The 
home range size of marine fish and mammals, including 
threatened and endangered species, far exceeds the 
dimensions of the exposure unit characterised by 
Iteration #1, sharply decreasing the probability that 
these receptors will be exposed to a localised concen-
trated condition emanating from the flowlines (an 
unrealistic scenario). Additionally, the available evi-
dence in the peer-reviewed scientific literature indicates 
that microplastics do not appreciably accumulate within 
marine biota, nor biomagnify through the food web and, 
thus, the unrealistic condition modelled by Iteration #1 
would not be expected to propagate throughout the 
marine community by way of the food chain. 

Accordingly, Iteration #1 concludes that unrealistic hydro-
logic conditions and ecological behaviour would be neces-
sary for microplastic formation from the flowlines to pose a 
potential risk to the local marine community. 

Iteration #2 

Iteration #2 calculates the PEC in the order of 10−2 to <1 
times the PNEC (HQs < 1) should dispersion of the 
degraded plastic mass be localised to within 30.5 m of the 
flowlines. Thus, Iteration #2 concludes microplastic forma-
tion from the flowlines does not pose a risk to the local 
marine community. 

Iteration #3 

Unpublished technical documents from the field indicate 
that the ocean current velocity above the seabed is approxi-
mately 0.2 m/s. Microplastic rise velocities reported in the 
scientific literature vary for different shapes and sizes with 
values ranging from 0.005 to 0.019 m/s (Kukulka et al. 
2012; Kooi et al. 2016). Based on these inputs, microplastics 
are modelled to concentrate within a cuboid-shaped region 
with dimensions of 378 m (X) × 613 m (Y) × 18–68 m (Z) 
above the seabed (Table 6). Iteration #3 is simulated a 
total of eight times, commingling different PNECs, SSDRs, 
and exposure unit dimensions based on the low/high rise 
velocity. 

Iteration #3 calculates the PEC in the order of 10−6 to 
10−4 times the PNEC (HQs ≪ 1) when the cumulative 

degraded mass from both flowlines is dispersed throughout 
the region defined by the box model. Thus, Iteration #3 
concludes microplastic formation from the flowlines does 
not pose a risk to the local marine community. 

Iteration #4 

Iteration #4 indicates that the PEC is in the order of 10−2 to 
<1 times the PNEC (HQs < 1) when the totality of the mass 
from both flowlines is dispersed through the region defined 
by the box model in Iteration #3. Thus, the fourth iteration 
of risk characterisation concludes that microplastic forma-
tion from the flowlines does not pose a risk to the local 
marine community. 

Conclusion 

This approach developed for quantitative assessment of the 
risks associated with long-term degradation of deep-sea 
plastic – containing infrastructure involves four iterations 
of modelled ‘risk’ based on forward or backward calculation 
of a deterministic HQ, using an SSD derived in accordance 
with Australian water quality guidelines. The multiple 
iterations provide for an examination of model sensitivity 
to the various model inputs describing the PEC. The 
sensitivity of the PNEC was assessed through derivation of 
two SSDs from different data sets, prioritising either particle 
shape or marine species. Thus, the approach serves to bound 
the risk characterisation, encompassing all possible out-
comes. In developing the model estimates, conservative 
assumptions have been made that can be expected to signif-
icantly overestimate the level of risk, reflecting the desire to 
protect sensitive populations. 

In the case study of two plastic-containing flowlines in an 
oil production field offshore of Australia, the outcome of the 
risk assessment is the same for each model iteration: degra-
dation of the flowlines does not pose a risk to the local 
marine community. 

Table 6. Box model of microplastic dispersion from the flowlines 
(1 h).       

Vx 
A Vy 

B Vz 

Ocean current 
velocity 

(m/s above 
seabed) 

(m/s above 
seabed) 

(m/s above 
seabed)   

Low-end estimate 0.141 0.141 0.005 

High-end estimate 0.141 0.141 0.019      

Microplastic 
dispersion (1 h) 

dx dy dz 

(m) (m) (m)   

Low-end estimate 509 509 18.0 

High-end estimate 509 509 68.4 

AVx = | (0.2 m/s) cos(45°) |. BVy = | (0.2 m/s) sin(45°) |.  
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Supplementary material 

Supplementary material is available online. 
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